Stability: plane method

Storyboard

To understand the configuration of the soil on the plot, it is essential to determine the slope angle at which the layers become unstable, leading to landslides that have shaped the structure observed today.

>Model

ID:(164, 0)



Plane method

Description

Slopes have the issue that the soil can slide if the forces generated by its own weight exceed the soil's cohesion. Since cohesion can vary due to external factors, there is a possibility that a mass may lose stability and shift, making it essential to understand its vulnerability and the likelihood of future destabilization.

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\phi$
phi
Angle of internal friction of the soil
rad
$c$
c
Cohesion of the material
Pa
$k$
k
Degree of cohesion induced by fine particles
Pa
$k_c$
k_c
Friction angle sensitivity to clay
rad
$k_a$
k_a
Friction angle sensitivity to sand
rad
$k_w$
k_w
Friction angle sensitivity to water
rad
$c_0$
c_0
Inherent cohesion of dry material
Pa
$\phi_0$
phi_0
Internal friction angle of the base soil
rad
$H$
H
Layer height
m
$g_c$
g_c
Mass fraction of clay in the sample
-
$g_a$
g_a
Mass fraction of sand in the sample
-
$g_i$
g_i
Mass fraction of silt in the sample
-
$g_w$
g_w
Mass fraction of water in the sample
-
$\sigma$
sigma
Normal tension
Pa
$s$
s
Saturation
-
$SF$
SF
Security factor
-
$m$
m
Sensitivity of cohesion to water
Pa
$\tau$
tau
Shear stress
Pa
$\theta$
theta
Slope angle of the hillside
$\rho_s$
rho_s
Solid Density
kg/m^3
$\gamma_s$
gamma_s
Unit weight of soil
N/m^3
$\gamma_w$
gamma_w
Unit weight of water
N/m^3
$\rho_w$
rho_w
Water density
kg/m^3
$p_v$
p_v
Water pressure in pores
Pa

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples


(ID 16106)

Para modelar la estabilidad de un terreno asumimos un fondo rocoso con una pendiente dada y una capa de suelo homog nea que se puede deslizar sobre esta.

(ID 1134)

La secci n que estamos estudiando tiene un ancho \Delta.y un largo L:

(ID 2971)

En primera instancia podemos considerar que la masa genera una fuerza gravitacional que trata de deslizar el suelo por la pendiente. Por otro lado la componente vertical al fondo rocoso genera el roce necesario para mantener la masa en su lugar:

De no existir agua ambas fuerzas son proporcionales a la masa por lo que finalmente solo depender del coeficiente de roce si la capa es estable.

(ID 2970)

De existir agua en el suelo esta contribuye en varias formas para desestabilizar la capa de suelo. Una primera forma es creando una fuerza de sustentaci n que reduce la fuerza normal y con ello el roce que sujeta el suelo en el lugar:

Este comportamiento corresponde a lo que se podr a llamar en el limite la tendencia a que el suelo flote.

(ID 7985)

La segunda contribuci n del agua tiende, en la medida que el agua este adecuadamente dosificada, a estabilizar el suelo. Si solo figura como humedad relativa alta se forman meniscos de agua entre los granos que ejercen fuerzas cohesivas. Sin embargo si la capa de suelo es inundada dicha secci n pierde esta cohesi n y es el resto sobre el nivel del agua que debe soportar el peso de la masa:

(ID 7986)

The cohesion of the material ($c$) and the angle of internal friction of the soil ($\phi$) depend on the soil composition (the mass fraction of sand in the sample ($g_a$), the mass fraction of silt in the sample ($g_i$), the mass fraction of clay in the sample ($g_c$)) and water content (the mass fraction of water in the sample ($g_w$)).

Based on measurements, phenomenological models can be developed to describe these properties:

Cohesion Model

Cohesion the cohesion of the material ($c$) is expressed using the equation:

$ c = c_0 + k ( g_i + g_c ) - m g_w$



Where the constants the inherent cohesion of dry material ($c_0$), the degree of cohesion induced by fine particles ($k$), and the sensitivity of cohesion to water ($m$) take the following typical values:

• the inherent cohesion of dry material ($c_0$):

Sandy soils 0-5 kPa
Loamy soils 5-15 kPa
Clayey soils 15-50 kPa


• the degree of cohesion induced by fine particles ($k$): 20 - 200 kPa
• the sensitivity of cohesion to water ($m$): 5 - 20 kPa

Internal Friction Angle Model

The internal friction angle the angle of internal friction of the soil ($\phi$) is described using the equation:

$ \phi = \phi_0 + k_a g_a - k_c g_c - k_w g_w$



Where the constants the internal friction angle of the base soil ($\phi_0$), the friction angle sensitivity to clay ($k_c$), the friction angle sensitivity to sand ($k_a$), and the friction angle sensitivity to water ($k_w$) take the following values:

• the internal friction angle of the base soil ($\phi_0$):

Dry sand 30 - 40
Dry loam 20 - 30
Compact clays 15 - 25


• the friction angle sensitivity to clay ($k_c$): 5 - 10
• the friction angle sensitivity to sand ($k_a$): 3 - 8
• the friction angle sensitivity to water ($k_w$): 5 - 15

(ID 16125)


(ID 16105)


ID:(383, 0)